Analog CMOS Circuits Implementing Neural Segmentation Model Based on Symmetric STDP Learning
نویسندگان
چکیده
We proposed a neural segmentation model that is suitable for implementation in analog VLSIs using conventional CMOS technology. The model consists of neural oscillators mutually couple through synaptic connections. The model performs segmentation in temporal domain, which is equivalent to segmentation according to the spike timing difference of each neuron. Thus, the learning is governed by symmetric spike-timing dependent plasticity (STDP). We numerically demonstrate basic operations of the proposed model as well as fundamental circuit operations using a simulation program with integrated circuit emphasis (SPICE).
منابع مشابه
Noise-Tolerant Analog Circuits for Sensory Segmentation Based on Symmetric STDP Learning
We previously proposed a neural segmentation model suitable for implementation with complementary metal-oxide-semiconductor (CMOS) circuits. The model consists of neural oscillators mutually coupled through synaptic connections. The learning is governed by a symmetric spike-timing-dependent plasticity (STDP). Here we demonstrate and evaluate the circuit operation of the proposed model with a ne...
متن کاملA CMOS Spiking Neural Network Circuit with Symmetric/Asymmetric STDP Function
SUMMARY In this paper, we propose an analog CMOS circuit which achieves spiking neural networks with spike-timing dependent synaptic plasticity (STDP). In particular, we propose a STDP circuit with symmetric function for the first time, and also we demonstrate associative memory operation in a Hopfield-type feedback network with STDP learning. In our spiking neuron model, analog information exp...
متن کاملDendritic-Inspired Processing Enables Bio-Plausible STDP in Compound Binary Synapses
Brain-inspired learning mechanisms, e.g. spike timing dependent plasticity (STDP), enable agile and fast on-the-fly adaptation capability in a spiking neural network. When incorporating emerging nanoscale resistive non-volatile memory (NVM) devices, with ultra-low power consumption and high-density integration capability, a spiking neural network hardware would result in several orders of magni...
متن کاملImplementation of a spike-based perceptron learning rule using TiO2−x memristors
Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic "cognitive" capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid ...
متن کاملCMOS current-mode neural associative memory design with on-chip learning
Based on the Grossberg mathematical model called the outstar, a modular neural net with on-chip learning and memory is designed and analyzed. The outstar is the minimal anatomy that can interpret the classical conditioning or associative memory. It can also be served as a general-purpose pattern learning device. To realize the outstar, CMOS (complimentary metal-oxide semiconductor) current-mode...
متن کامل